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One of the basic physical phenomena for sustaining the growth and develop­
ment of plants and organisms is that of diffusion. It has arrested the attention of 
investigators from the time of Fick (10) in 1855, who, drawing the analogy be­
tween conduction of heat and the transport of matter, was responsible for giving 
a quantitative formulation of the basic laws of diffusion. After some hundred 

1 Presented at the 113th Meeting of the American Chemical Society, which was held in 
Chicago, Illinois, April, 1948. 

2 Contribution 0.82 from the Department of Chemistry of the University of Utah . 
8 American Chemical Society Postdoctoral Fellow, 1947-48. 
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years of investigation, there are aspects of the problem of diffusion which remain 
unexplainable. A detailed kinetic approach to diffusion is presented in the hope 
that it will clarify established concepts and provide impetus to a fresh approach 
to the existent problems in the field of biological diffusion. The absolute rate 
theory treatment of diffusion and membrane permeability provides a general 
unified point of view applicable to systems .of varying degrees of complexity. 
It is equally adaptable to the treatment of the permeabilities of membranes to 
electrolytes and to non-electrolytes under the driving forces of a concentration 
gradient, an activity gradient, and external and internal potential gradients. 
Applications are made of the general equations derived to the permeabilities 
of egg cells of marine invertebrates and of plant cells to water and to non-elec­
trolytes. 

In Section I, Fick's first and second laws of diffusion for a two-component 
system are derived by use of difference equations. The general treatment of 
diffusion from the point of view of rate theory is given in Section II. For steady-

. state diffusion, the flux is defined by new equations which take explicit account 
of all types of potential barriers crossed by the migrating particles. The effect 
of external forces on the diffusing system is then taken up in Section III. In 
Section IV the general equations of Section II are simplified on the basis of as­
sumed models of diffusing systems. 

In Section V a somewhat detailed analysis is presented for determining the 
mechanism of the permeation process from studies on distribution coefficients 
and temperature coefficients. Section VI includes calculations of the various 
thermodynamic functions from permeability data. 

I. FICK'S FIRST AND SECOND LAWS OF DIFFUSION 

Molecular migration in condensed phases may be treated as point-to-point 
jumps of the elementary particles governed by a rate constant. The nature of 
the elementary jumps will show very many variations, depending on the nature 
of the diffusing components. It is instructive to analyze the various types of 
relaxations or jumps to see how they lead to the relations usually applied. We 
consider first a single two-component system with molecules which are suffi­
ciently alike so that the whole may be thought of as forming a more or less per­
fect lattice. 

In figure 1 we have a schematic potential diagram. If Ci is the concentration 
per cubic centimeter at the ith position, then the amount of material in a square 
centimeter of cross-section and length A (the distance between equilibrium 
minima in figure 1) is AC i . Let k represent the number of times per second a 
molecule jumps. At the steady state, let Q be the amount of C passing per second 
through a square centimeter of surface. Then 

Q = kAC i - kACH1 (1) 

The concentration gradient between the ith and the (i + l)th position is 

dC CHI - C; 
dx A 

(2) 
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Thus 

Q = kX(Ci - CHI) = _kX2 (CH1;: C.) = _kX2 ~~ (3) 

This is Fick's first law, ordinarily written as 

Q= _D dC 
dx 

where D = kX\ a result derived earlier (9). 
Fick's second law is obtained equally easily. Thus, the rate equation is 

d(XC.) -at = k(XC i - 1) - 2k(XC.) + k(XCH1 ) (4) 
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FIG. 1. Schematic potential energy profile 

Here we have the rate of increase in number of molecules at the ith position 
equal to the difference between the number of molecules jumping into the ith 
position from the (i - l)th and (i + l)th positions and the number of molecules 
leaving the ith position. Now, further, equation 3 gives the concentration gradient 
(CHI - C.)/X at a point halfway between point i and i + 1. Similarly (C. -
C._1)/ X is the concentration gradient halfway between the i th and the (i - l)th 
positions. The second derivative at the i th position is then 

d
2

C = ! (CHI - C. _ Ci - C.- I) 
dx2 X X X 

C'+1 - 2Ci + C.- I 
X2 

(5) 
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Rearranging equation 4, we obtain: 

dC. = kX2 (C'-l - 2C. + C'-l) = kX2 d
2 C. 

dt X2 dx2 
(6) 

It might be pointed out that the approximations made are valid only in the 
limit where 

urn (tlC) = dC 
x .... 0 X dx 

This implies that a smooth continuous resistance is offered to the diffusing mole­
cule, which may only be approximately true in the case of the thin natural mem­
branes (50-150 A.) whose complex structure of large protein and lipoid molecules 
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FIG. 2. An energy profile curve in which free energy is plotted against the flow coordinate 

may offer an irregular resistance to flow. The latter point is implicit in the deri­
vation in the following section. 

II. GENERAL TREATMENT OF DIFFUSION AND PERMEABILITY 

By regarding the flow of molecules as a series of successive jumps from one 
equilibrium position to another, diffusion in membranes and their permeabilities 
are readily treated. In figure 2 an energy profile curve is constructed where free 
energy is plotted against the flow coordinate. Although this schematic energy 
diagram as drawn represents diffusion through a heterogeneous three-layer mem­
brane or transport of matter through a solution-membrane-solution system, we 
shall generalize and assume a diffusion system where all the rate constants for 
forward and reverse flow are unequal. Concentration at the various minima Ai 
is defined as concentration of particles per square centimeter cross-section of 
thickness X in the direction of flow. The specific rate constant in the forward 
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direction for Ai is defined as ki. Similarly, k: is the specific rate in the (-x) 
direction from the equilibrium position A i. It is to be noted that Ai = A;C,. For 
steady-state conditions the flux at the various maxima is given by the set of rate 
equations: 

Q = kOACo - k~ACI 

Q = klACI - k~AC2 

, 
Q = knACn - kn+IACn+l 

(7) 

Here the flux Q represents the net flow of material through a unit cross-sectional 
area per second. We are assuming an ideal system and also taking all the A'S, 
the distances between the various minima, to be equal. Solving the second equa­
tion for Cl and substituting in the first equation one obtains: 

Q = kOACo - ~ [Q + k~AC2] 
Then using the third equation to eliminate C2 one obtains: 

Q = kOACo - Z [ Q + ~ (Q + k~AC3) ] 
Continuing the process and solving for Q, we arrive at the expression that 

n (k') ko ACo - n i k:+1 AC"+l 

Q = 1 +'t Ii (k:) (8) 
<=1 i-I ki 

When the distances Ai between equilibrium positions are not the same, we have 
the more general expression: 

ko AO CO - fr (kk~:~~) k:+1 A:+I Cn+1 

Q = .-1 · 1\. (9) 

1 + :t IT (k: A:) 
r-I i-I k, A, 

From the theory of absolute rate processes, a specific reaction rate constant for 
any process is given by 

I.' kT -liptlRT 
/Ii = K he 

where K is the transmission coefficient, and kT / h is a frequency factor involving 
the Boltzmann constant, k, the absolute temperature, T, and h, Planck's con­
stant. If we assume the transmission coefficients to be unity, which appears to 
be true for most processes, equation 8 simplifies to 

Q = 'ft A [e-liF!IRTCo ~ eexp [- ~ :L\F:t - L\FD + L\F:t.r1 / RT JCn+IJ (10) 

1 + L e exp (- ~ (L\F;t - L\Fi) /RT) 
<-I . -1 
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The rate of movement of matter is thus governed by the relative heights of the 
potential barriers, as given explicitly in equation 10. Since the specific rate con­
stants enter as ratios, it is the difference in the free energies of activation for the 
individual unit processes of flow which will determine the flux. 

III. EFFECT OF EXTERNAL FORCES 

How external forces act on a kinetic system can readily be incorporated into 
our general expression for the transport of material under steady-state condi­
tions. The procedure to be followed has been successfully employed in inter­
preting rate phenomena such as plastic flow, creep, viscosity, relaxation of di­
electrics, conductance in solution, and other related phenomena (11). 
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For simplicity of treatment, consider a two-component diffusing system gov­
erned by a single unimolecular rate constant. The basic assumption is that the 
external force acting on a single unit process simply provides an additional 
amount of work W, which will tend to aid or hinder the process by increasing or 
decreasing the free energy of the initial and final positions. Assuming a sym­
metrical potential barrier as diagrammed in figure 3, the work done is given by 
the force f acting only through the distance X/ 2 between the initial and the 
activated states. The net linear velocity in tenns of the specific rates for the 
forward and reverse steps is 

v = X(k, - kb) = koX(eW!kT - e-W1kT ) 

This equation can also be written in the form 

V = Ako 2 sinh (W /kT) 

(11) 

(12) 
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With the exception of plastic flow and creep in high-polymeric materials, it is 
usually found that W « kT. Under these conditions, it is permissible to a good 
approximation to retain only the first term in the power series expansion of the 
hyperbolic sine function, thus: 

v ~ Alco (~~) (13) 

With our definition of the work term W, the above equation is readily generalized 
to take into account the various forces acting on the diffusing particle: 

(14) 

The flux is now expressed as the product of three terms-the concentration, the 
force acting per particle, and the mobility constant, B = Do/ kT. 

Q = ve = Be LIi (15) 
i 

An equation for the flux similar in form to our equation 15 was derived by Herz­
feld (12), using a slightly different procedure. 

We are now in position to treat the effect of various forces encountered in 
diffusion. The above formulation provides a consistent theory readily adaptable 
for the interpretation of diffusion phenomena under a variety of conditions, 
explaining equally well the diffusion of electrolytes and of non-electrolytes. It is 
only necessary to decide on the correct analytical form for the driving force. In 
ideal systems, the dissipation of energy in diffusion is controlled by the concen­
tration gradients so that 

I= _kT
dlne 

d"t 
(lSa) 

whereas for non-ideal systems, where the chemical potential is a function of the 
activity a, we have: 

I= _kT
dlna 

dx 
(15b) 

For the diffusion of charged particles of charge Zi under a potential gradient I(J, 
the force is 

Ii = eZ,ip (15c) 

Let us consider the diffusion of electrolytes in greater detail. If we assume 
that both the activity gradient and the potential gradient define the transport 
of material, then combining equations 15b and 15c with equation 15, the net 
transport of ions of the i th species is 

Q = D . {eZ;I(JiCi _ C, d In a.} 
0, leT dx 

(16) 
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or it may be written 

(16a) 

where Ai is the equivalent conductance at infinite dilution and F is the faraday. 
Where Ci ~ f(x), then Ci d In ai/dx = Ci d In "Yi/dx and only the activity coef­
ficient gradient is determining. Certain cases of "active diffusion" as found in 
biological systems are interpretable by means of the above equation. If the 
potential gradient term is dominant, diffusion of ions against a concentration 
gradient may be expected. By extension of equation 16, the Nernst- Planck 
equation for the diffusion of electrolytes as also the equation for the diffusion 
potential are obtained, as shown by Stearn and Eyring (21). 

The above treatment for the effect of external forces can now be extended to 
the general expression for the flux under steady-state conditions where the indi­
vidual unit rate processes are governed by their own specific rate constants. 
The rate constants operative in the system under the influence of external forces 
are defined as follows in tenns of the general work term Wi. For the forward 
rate, we have 

and similarly for the reverse process (a symmetrical barrier assumed) 

k ' - k' -wi lkT 
1 - o. e 

(17) 

(17a) 

where the kOi and k~ i represent the specific rate constants for the ideal system. 
If the equilibrium distances, Ai, are taken to be equal, then Wi = W:, and 
equation 9 for the flux under the effect of external forces is 

Q= 
k "\ ac IT" (k~ i)k' "\ - (2 i+l)a C 

00 I\e 0 - -k 0, n+! 1\ e ,,+1 
i-I Oi (18) 

where 0: = W / kT. In the simplest case, where all the specific rate constants are 
equal, we obtain the result that 

k "\ [ ac lIn - (2i+l)a C ] 
01\ e 0 - e n+l 

Q = i -I 
n T 

(19) 

1+L:ITe-2ia 

r - l i-I 

The second term in the denominator is a geometric series which, is readily summed 
and after suitable factoring, our final expression is 

Q = 2 koA sinh (0:) [1 1 2P + C Cn+~ ] (Co - Cn+!) (20) 
- e 0 - n+l 

where {3 = (n + 1)0: and (n + 1) is the number of molecular jumps along the 
flow coordinate (+x). 
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For large forces and thick films, i.e., a '" 1 and n » 1, respectively, the flux is 
simply 

Q = 2koACo sinh a (21) 

When the forces are large, the reverse flow over the potential barrier becomes 
negligible and the net transport is thus independent of the thickness of the mem­
brane and the final concentration. The second case of small external forces and 
thin films is of greater practical interest. Here, since a « 1 and f3 = (n + l)a < 1, 
we can replace both the exponential function and the sinh a by the respective 
first terms in power series expansions to obtain from equation 20 that 

Q '" (n ~A:)A {I + 2(n + l)a (Co :+~n+)} (Co - Cn+1) (22) 

The permeability constant is then 

p = ~o {I + 2(n + l)a (Co ~n+~n+)} (23) 

where 0 = (n + l)A is the film thickness. It follows that the diffusion coefficient 
for the non-ideal case is 

D = Do {I + ~~ (Co :+~n+)} (24) 

Now if we assume that the force is given by the activity coefficient gradient, 
then 

(25) 

However, 

d In C 1 dC Cn+1 - Co '" Cn+1 - Co 
~ = Cdz = CavO - oCn+1 

thus, 

{ 
dln'Y} dIna 

D = Do 1 + d In C = Do d In C (26) 

The same thermodynamic correction to the diffusion coefficient in non-ideal 
cases was obtained by Onsager and Fuoss (20) and by Stearn, Irish, and Eyring 
(22). 

IV. MODELS FOR DIFFUSING SYSTEMS 

We may now choose to consider specific models for the diffusion systems in 
order to arrive at equations directly applicable to the treatment of permeability 
data for actual systems encountered in practice. Two cases will be considered. 

Case I: Here all the rate constants are taken to be equal, so that we have the 
condition 
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" , ko = k1 = k2 = . .. = kn = le1 = le2 . .. = k"H 

In our general equation 8 for the flux, the terms have the values 

II ~ =1 " (k') 
i -1 ki 

and 

EII ~ =n n r (k~) 
r-1 i-1 k, 

so that the equation reduces to 

Q = !GoX/(n + 1)· (eo - CnH) (27) 

The distance along the flow coordinate between the measured concentrations is 
X(n + 1), so that we write 

D 
Q = 8" . (co - Cn+1) (28) 

This is Fick's first law of diffusion for an ideal system, applicable equally well to 
diffusion in continuous media and through thin membranes. 

Case II: The schematic two-dimensional potential-energy diagram for the 
model to be considered here is given in figure 2. This energy profile curve repre­
sents diffusion through a solution-membrane-solution system or through a com­
posite three-layer membrane. Animal and plant cell membranes are essentially 
semirigid structures with proteins and phospholipoids as the main chemical 
building units. An excellent discussion of their structure and composition is pre­
sented in the recent text by Davson and Danielli (7). The model which is being 
considered corresponds to the general pattern of the cell membrane structure as 
proposed by Danielli (7, p. 64). 

In our general equation 8 for the flux, Co and Cn+l are the initial and final con­
centrations of the diffusing substance in the solutions on each side of the mem­
brane. These concentrations when multiplied by X correspond to the Ao and A~ 
terms shown in figure 2. The diffusing system is characterized by four specific 
rate constants defined as follows: 

k. = constant for diffusion in solution, 
k m = constant for diffusion in the membrane, 

kim = constant for diffusion through the solution-membrane interface, 
k"" = constant for diffusion through the membrane-solution interface, 

while all the remaining rate constants in the respective phases are equal. Further, 
let 

8 = number of jumps in solution on the fore side of the membrane, 
8' = number of jumps in solution on the back side of the membrane, and 
m = number of jumps in the membrane itself. 
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The total number of jumps along the flow coordinate n + 1 = S + m + Sf + 2, 
the term 2 arising from the two solution-membrane interfaces. Since with the 
exception of the four specific rate constants the remaining constants are equiva­
lent in their respective phases, the terms for both numerator and denominator 
in equation 8 are readily evaluated. Thus, in the numerator, we have 

= 1 

and the denominator expands to 

1 + t tr (k~) = s + Sf + 2 !!.!.. + m k. km
• 

T=1 i -1 k; k.m k.m km 

Therefore, it follows that 

Q = k. ACeo - en+l) 
(s + Sf + 2k./ k.m + mk. km. / k.m km ) 

(29) 

where the permeability constant is now given by 

p = k.:\ 
(s + Sf + 21c. / Ic.m + mlc. km. / k.m km ) 

(30) 

Other complex systems can be as readily treated as the model given for case II. 
We may choose to consider explicitly the adsorption and desorption of the dif­
fusing component on the inner and outer walls of the cell membrane, which 
essentially consists in introducing two additional rate constants or parameters 
for the processes of adsorption and desorption. 

V. APPLICATIONS TO MEMBRANE PERMEABILITIES 

In the last section, an expression for the permeability constant (equation 30) 
was derived for a diffusing system characterized by four rate constants. Further 
consideration of the nature of this equation is necessary to determine under what 
set of conditions it is applicable. 

If we limit ourselves to systems where the interior and exterior solutions bath­
ing the membrane are of a sufficiently low viscosity (i.e., aqueous solutions), the 
main resistance to diffusion will be offered either by the interfaces or by the 
membrane proper. Since the diffusion constant in solution is several magnitudes 
larger than the constants associated with the membrane, the permeability con­
stant takes the simpler form of 

(31) 

The above expression will take on several different forms depending primarily 
on the relative magnitudes of the three specific rate constants. The derivation of 
this quantity is essentially based on three assumptions: (a) steady-state condi­
tions, (b) no dependence of P on concentration, and (e) a homogeneous mem­
brane. In its application to natural membranes, the parameter m, related to the 
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membrane thickness, 8, is a constant, so that the only true variable is temperature 
and the only experimentally determined quantity is the permeability. As a 
result of the limited number of variables, an evaluation of the separate rate con­
stants is not possible; however, a limited analysis for the determination of the 
rate-determining step in the transport of matter can be carried out by utilizing 
temperature coefficients and distribution coefficients for the diffusing component. 

The distribution or partition coefficient, K, is defined as the ratio of the rate 
constants for diffusion through the solution-membrane interface, i.e., K = 

k.mlkml • Introducing the distribution coefficient and rearranging equation 31, we 
have 

.!= _2_ +~ 
P k.mA kmAK 

(32) 

which can be written in the more compact form 

1 _ 2A ·+ 8 
P - D.m DmK 

(33) 

where 8 I'V Am. The membrane thickness and the diffusion coefficients follow from 
our previously derived relation that Di = kiA2. The use of this relation with the 
distribution coefficient considered as a variable can be utilized for determining 
the slow step in diffusion only for certain defined classes of compounds. It re­
quires that the permeability of a membrane to a series of compounds is primarily 
determined by their distribution coefficients while the variations in their specific 
rate constants k.m and km are relatively small. This condition may be fulfilled 
by the lower members of certain homologous series of compounds. If the latter 
is true, a graphical plot of l i P vs. 11K will establish the rate-determining step. 
Equation 33 may also be written as 

1 B - =A+­P K 
where A and B are regarded as constants.4 

(34) 

For natural membranes bathed by aqueous solutions, the distribution coeffi­
cient for most non-electrolytes is much less than unity. With this added condi­
tion that k. m « k ms , three cases can be distinguished, namely, 

I. k",« ksm « kms 

II. km » km• » k.m 

III. km ~ kma » kam 

The fourth possibility that km ~ k.m « km • is highly unlikely, in view of the 
contrasting difference in the structure and composition of membrane materials 
as compared with that of aqueous solutions, making the relation km ~ ksm seldom 
if ever true. 

4 No improvement in the rectilinearity of the plots was obtained by correcting for 
molecular size on the basis of the Einstein-Stokes equation for diffusion, i .e ., plotting 
IIPVl~3 against 11K , where V", is the molar volume. 
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In the first case where the rate-determining step is diffusion in the membrane, 
plot of liP VS. 11K for a series of related compounds will give rise to a straight 
line through the origin, for the constant A is negiigible. The permeability con­
stant is then given by the relation 

P= KDm 
o (35) 

For the second case, the slow step is diffusion through the solution-membrane 
interface. A series of compounds characterized by this mechanism will exhibit 
very closely a horizontal line for the liP VS. 11K plot, since B is very small. The 
equation of this line is then 

P = D.m 
2A 

(36) 

When the transport of material is regulated by diffusion through the interface, 
the permeability constant will be found to be independent of the distribution 
coefficient and membrane thickness. Unfortunately a direct test of this relation 
for natural membranes presents almost insurmountable experimental difficulties. 
In the third case, the rate-determining step is again diffusion through the solu­
tion-membrane interface modified to the extent that the rate constants for 
diffusion in the membrane and through the membrane-solution interface are 
equal. Plotting l i P VS. 11K gives rise to a straight line with an intercept on the 
ordinate axis. Since le m = lemr, the permeability constant is given by 

A A 
P = leim --- = D.m-

m + 2 0 
(37) 

Here, in contrast to case II as represented by equation 36, the permeability 
constant is a function of the membrane thickness. 

The data available in the literature on the permeability of natural membranes 
are fairly inadequate to give a conclusive answer as to the reliability of the above 
procedure based on distribution coefficients for determining the mechanism of 
the permeation process. An extensive series of measurements involving forty-five 
organic compounds were carried out by Collander and Barlund (4) on the plant 
cell Chara ceratophylla. This work was extended by G. Marklund (18) to nine 
other plant cells. Unfortunately, only a few cases could be picked where the 
compounds (more than two in number per class) were sufficiently cheInically and 
physically related to perInit the above analysis to be carried out. 

In figure 4 the required plot of the function l i P VS. 11K is given for the ali­
phatic ami des for two specimens,-the plant cell Chara and the marine eggs 
Arbacia. Following the suggestion of Collander and Barlund, the olive oil-water 
partition coefficients were used as a substitute for the membrane-solution coeffi­
cients. This plot is characteristic of case III, where lem ~ km• » k.m , i.e., the 
slow step is diffusion across the solution-membrane interface. The linearity of 
the plots indicates that the various rate constants km, km., and le.m are fairly 
constant for the members of this series of compounds. On this assumption, 
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Marklund's data for several plant cells are given in figure 5. With the exception 
of the three plant cells Oedogonium, Pylaiella, and Melosira, whose plots appear 
to pass through the origin as required in case I, the remaining SLX plants appear 
to have the same mechanism of permeation as the plant cell Chara. The poly­
hydroxy alcohols ethylene glycol, glycerol, and erythritol offyr another class for 
comparison. With the exception of the plant cell Melosira, given in figure 6, the 
1/ P vs. 1/ K plots for the other eight plant specimens studied by MarkJund 
exhibit a marked curvature; however, they seem to approximate case I (km « 

12 

Arbocio 

9 

... 6 
b 
)( 

-/0. 
3 

Aliphatic Amldes 

FIG. 4. Plot of the function liP versus 11K for aliphatic amides for Chara and Arbacia 

k.m « km. ), with the curve passing through the origin indicating that diffusion 
in the membrane proper is the regulating step. 

Of the remaining compounds studied by Collander and Barlund, about twelve 
classes could be differentiated where the compounds were sufficiently alike to 
permit an analysis. Inasmuch as only two compounds were found per class, the 
data are too meager to warrant any conclusions. Typical plots are demonstrated 
by the alkyl-substituted ureas in figure 7. These compounds, like the polyhydroxy 
alcohols, appear to belong to case 1. Of the twelve cases studied, they appeared 
to be evenly distributed as belonging to either case I or case III. Urethylan and 
urethan (methyl and ethyl esters of carbamic acid) were the only compounds 
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belonging to case II, i.e., k.m « k_ « km, where diffusion through the solution­
membrane interface is the slow step. Further work is required before an un­
equivocal answer can be given. More precise measurements of olive oil-water 
partition coefficients are badly needed, or, perhaps, in view of the indefiniteness 
of olive oil as a solvent regarding its origin, uniformity, composition, and purity, 

II') 

10 

x 

-ICL 

12 Aliphatic Amides 

x 

Acetamide 
Curcuma 

FIG. 5. Plot of Marklund's data for several plant cells 

a better solvent should be recommended to replace the solution-membrane par­
tition coefficients.5 

Danielli (6) derived expressions for the permeability constant similar in form 
to equations 35 and 36, for the two distinct rate-determining steps in the mecha­
nism of permeation. For very rapidly penetrating molecules, he assumes that the 
rate-determining step is diffusion through the membrane as given by equation 
35, whereas for slowly penetrating molecules, the principal barrier to be sur-

6 Meyer (19) recommended oleyl alcohol as a model substance in preference to olive oil. 
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mounted by the diffusing particle is presented by the solution-membrane inter­
face, so that the correct form for the permeability constant is given by equation 
36. The calculations carried out to prove this point appear to be questionable (8). 
There is no a priori reason for differentiating between rate-determining steps on 
the basis of the magnitudes of the permeability constants; only the relative 
values of the specific rate constants involved decide on the form of the equation 
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FIG. 6. Plot of the function liP versus 11K for polyhydroxy alcohols a.nd Melosira 

for the permeability constant. The analysis carried out on the basis of the distri­
bution coefficients, though sketchy in nature, appears to justify this point. Also 
it was found for the limited number of compounds investigated that no relation 
can be drawn between the magnitude of permeability constants and the mecha­
nism of permeation. 

Temperature coefficients do not provide a ready solution to the problem of 
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the mechanism of permeation. If we disregard for the moment the question of 
reversibility of the membrane structure to changes in temperature, the following 

Me Urea 

50 

40 

30 

x 20 

-ID-
10 

Specimen: Chara 

24 

FIG. 7. Plot of the function liP versus 11K for alkyl ureas and Chara 

limited analysis can be carried out. The specific rate constants are expressed in 
the usual form: 

k. = kT e-4 11'11BT 

h 

To determine the heats of activation, Mit, the function In (Ph/kT) is plotted 
against the reciprocal of absolute temperature. For the three limiting cases dis­
cussed in relation to the distribution coefficients, as exemplified by equations 35, 
36, and 37, a straight-line relation will be obtained between In (Ph/kT) and the 
reciprocal of absolute temperature. A differentiation of the three cases on the 
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basis of the magnitude of the slopes, i.e., the heats of activation, is also not 
possible j thus temperature coefficients are of little aid for elucidating the mecha­
nism of permeation. In one particular case a temperature study would be of help. 
Consider the case that lem > le m.» le.m, which is a modificati'on of our third case 
where lem and le m• were taken to be equal. In this case the original expression for 
the permeability constant applies as given by equation 31. The effect of an extra 
specific rate constant in the denominator would be to destroy the linearity be­
tween the In (Ph/leT) vs. l/T relation. The plot would exhibit a definite concave 
curvature to the abscissa axis, especially in the lower temperature range. 

VI. ANALYSIS OF DATA 

The data which have been selected for analysis pertain to the permeabilities 
of the cell walls of the eggs of several marine invertebrates, including Arbacia 
punctulata (a sea urchin), Chaetopterus pergamentaceus (a marine annelid), and 
Cumingia tellenoides (a mollusc). The egg cells of these marine animals, together 
with the plant cell Chara ceratophylla, represent a class of specimens whose per­
meabilities are determined primarily by a thin membrane enveloping the cell. 
In the case. of the plant cell Chara, the rigid cellulose wall is very permeable to 
most substances, and it is the exterior plasma membrane of the cytoplasm which 
offers the main resistance to transport of material into and out of the cell sap or 
vacuole. 

The permeabilities of these marine specimens to water and various non-electro­
lytes6 represent primarily the studies of Lucke (14, 15, 16), Jacobs (24), and their 
collaborators. 7 Their measurements on water permeability were carried out by 
observing the changes in the diameter of the spherical egg cells during swelling 
when placed in hypotonic solutions of sea water. Jacobs (13) developed a special 
method for determining permeability values for the non-electrolytes. The eggs, 
initially in sea water, are placed in sea water made hypertonic by addition of 
the non-electrolyte. Under these conditions the cell reaches a minimum volume 
from which the permeability constants for the non-electrolyte, as also that for 
water, can be calculated. Since the cells of the plant Chara ceratophylla are suffi­
ciently large, Collander and Barlund (3, 4) used a direct chemical method for the 
determination of the permeabilities. 

To permit the calculation of the various thermodynamic quantities listed in 
tables 1 through 4, it is necessary to make certain assumptions as to the equa­
tions which express the permeability. In addition, the quantities involved in the 
final expression have to be defined, such as the solubility of the penetrating sub­
stance in the cell membrane, the thickness of the cell wall, and the distance 
between equilibrium positions (A) in the transport of the material. In the preced­
ing section the difficulties encountered in the determination of the mechanism 
of the permeation process were pointed out. The analysis of the permeability 
data for non-electrolytes seems to show that all three possible mechanisms do 

6 Compounds stable to ionization in the physiological pH range. 
7 For permeability to water see references 14, 15, and 16 i for permeability to non-electro­

lytes see reference 24. 
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exist; however, the majority of the compounds appear to have their permeation 
rates determined by diffusion through the bulk membrane. In view of this analy­
sis, the assumption is made that both water and non-electrolytes belong to class 
I, whose rate-determining step is diffusion in the bulk membrane. The equation 
for the permeability constant then corresponds to the expression: 

P (cm.) = KD (38) 
sec. 0 

as developed in the preceding section for case I. This form of the equation was 
used in the treatment of the available data on the permeability of the egg cells 
of marine invertebrates and the plant cell Chara. 

From the theory of absolute rates of reaction, we may write 

P 
= K)..2 kT e-tJ.pt/RT kT)..2 -tJ.P'/RT 

o h =hF e (39) 

where D.F' is the free energy of activation for permeability and APt is the free 
energy of activation for diffusion in the membrane. The free energy, D.F', repre­
sents the difference in free energy of the diffusing component between its initial 
position in the aqueous solution surrounding the cell and the top of the highest 
potential barrier the diffusing molecule must pass over within the membrane. 
If the variation of the permeability constant and the partition coefficient with 
temperature is known, it is possible to calculate both MI' and Mit, the heat 
contents for permeation and diffusion, by plotting In (Ph/kT) and In (Ph/ kTK) 
VS. l / T, respectively. 

The entropies of activation for permeability (.AS') and diffusion (ASt) are 
calculated from the Gibbs-Helmholtz equation: 

D.F = AH - TAS (40) 

All the thermodynamic quantities refer to the diffusing substance in its standard 
state of unit concentration. The usual zero superscript is omitted to simplify 
the presentation. Since pressure has a small effect on diffusion, i.e., pA Vt is 
negligible, the heat of activation, Mit, for diffusion is related to the Arrhenius 
energy of activation by the equation: 

(41) 

In calculating the free energy terms of activation, D.F' and AFt, it is necessary 
to assume values for the cell wall thickness (0) as also for the distance ()..) between 
equilibrium positions in the membrane. Measurements of wall thickness for cells 
of various animals and plants give values in the range of 100-200 A. For 
the diffusion of substances in condensed phases (ll), the values for the size of 
molecular jumps, ).., are in the limits of 3-10 A. In the calculations the 
maximum value for 0 of 200 A. and a mean value for).. of 5 A. were used. The 
maximum variation in the value of the term In ()..2 / 0) for the defined limits of ).. 
and 0 corresponds to 6.2 E.U., if absorbed in the entropy term for permeability. 
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In view of the large entropy changes which are calculated, this approximation is 
significant but not serious. 

No experimental values are available for K, the distribution coefficient for the 
diffusing substance between the cell membranes and the solution in which it is 
immersed. Because of the lipoid nature of the cell membranes, the procedure 
commonly followed is to assume that the true coefficient is directly proportional 
to that found for the substance partitioned between olive oil and water. Values 
for this quantity, K = (concentration in olive oil) -;- (concentration in water), 
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FIG. 8. Permeability of Arbacia eggs (unfertilized) to water 

were taken from a; paper by Collander and Barlund (5). Since no literature data 
are available on the temperature variation of the olive oil-water coefficients, it 
is only possible to calculate the heats of activation for permeability, t1H'. The 
permeability constants reported in the literature for substances diffusing in bio­
logical systems are not given in the standard units of cm.-sec.-1 The factors used 
in converting the reported constants to the units of cm.-sec.-1 as given in the 
tables are discussed in the appendix. 

In figure 8, the data of Lucke. Hartline. and McCutcheon (14) on the water 



1446 B. J. ZWOLINSKI, H. EYRING, AND C. E. REESE 

permeability of unfertilized A rbacia eggs during endosmosis and exosmosis are 
plotted as a function of temperature. By plotting In (Ph/kT) against reciprocal 
temperature, the heats of activation for permeability are calculated from the 
slopes of the lines. Values for the permeability constants are uncorrected for the 
non-solvent volume, i.e., the osmotically inactive materials of the egg cells. The 
non-solvent volume correction is on the average about 10 per cent (17), which 
if absorbed in the entropy term corresponds to less than one entropy unit. In 
the calculation of the free energies given in table 1 for water, the uncorrected 
permeability constants were employed. Though the permeation of water during 
exosmosis is higher by only 30 per cent, the heat of activation, MI', is smaller 
by 5 kcal. This large decrease in I1H' for exosmosis is compensated by a similar 
large decrease in entropy of activation from 31.6 to 15.5 E.U. The large heats of 
activation involved in the permeation of water approach in magnitude the values 
found for activation energies for diffusion in solids. The large positive entropies 
of activation which compensate the heats of activation to give free energies of 
the order of 10 kcal. are unique. The entropy values are approximately twice as 
large as those found by Barrer (1) for the diffusion of nitrogen, argon, and hydro­
gen in synthetic rubbers like neoprene and copolymers of butadiene. In magni­
tude, the AS' approach the values found for the entropies of activation for 
relaxation phenomena in dielectrics. It appears that a greater region of disorder 
must arise when a molecule is diffusing in a cell membrane than in more rigid 
structures like the above plastics. This indicates that a larger number of second­
ary bonds are being broken. 

In figure 9 the effect of temperature on the water permeability of fertilized 
Arbacia eggs during endosmosis is given as measured by McCutcheon and Lucke 
(16). Again a very satisfactory straight line is obtained. Each of the plotted 
points in this figure as well as in the others represents the mean of measurements 
on a maximum of five Arbacia egg cells. The permeability of fertilized eggs is 
higher not only for water but also for ethylene glycol, as shown in table 3. Specu­
lations have been made as to the effect of fertilization on the nature of mem­
branes. The striking changes in the heats and entropies of activation for the 
permeation of water, as given in table 1 for the unfertilized and fertilized Arbacia 
eggs during endosmosis, leave little doubt that a permanent change must occur 
in the chemical and physical properties of the membrane. Any changes in the 
membrane thickness due to stretching and/ or adsorption of new compounds on 
the inner wall surface of the cell appear to be of secondary importance. Fertiliza­
tion causes an increase in the heat of activation which is overcompensated by a 
larger increase in the entropy, resulting in higher permeability rates. Whatever 
changes occur in the membrane on fertilization, whether denaturation or rear­
rangement of the protein and lipoid units, the thermodynamic values indicate 
that the activation process in the diffusion of a water molecule involves formation 
of a larger number of stronger bonds made possible by the greater amount of 
disarrangement that takes place. This view is supported by the work of Cole 
and Spencer (2), who found that the electrical capacity of the membrane of 
fertilized Arbacia eggs is increased by almost a factor of four. 
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The effect of temperature on the permeability of ethylene glycol through un­
fertilized Arbacia eggs was thoroughly investigated by Stewart and Jacobs (23). 
Their results are plotted in figure 10. The value for tll[' of 23.6 kcal. is of the 
same order of magnitude as that found for water. Since ethylene glycol permeates 
only one-fifth as rapidly as water, it appears that here also a large positive 
entropy of activation is involved. At 22.5°C. it amounts to 36.8 E.U. 

In table 1, the permeabilities to water of several species of marine inverte­
brates are compared. The free energies of an activation are all of the same magni-
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FIG. 9. Permeability of Arbacia eggs (unfertilized) to ethylene glycol during endosmosis 

tude-about 10 kcal. Similarly, in table 2, the values are given for the permea­
bility and diffusion constants of three aliphatic amides. The tll[' and t..F' are of 
the same magnitude as those found for water permeation of the Arbacia eggs. 
It is interesting to note that as we progress up in the homologous series leading 
to greater solubility in the cell membrane, the free energies for permeation de­
crease, whereas those for diffusion increase. This indicates that, although the 
permeability constants increase with solubility in agreement with Overton's 
theory, the diffusion constants actually decrease. The same relation was found 
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TABLE 1 

Permeability to wate?' 

PROCESS pC::) X 10' MI' tJl.. t>S' 
AT 24°C. 

-----1----- ------ ---

Arbacia. .. .. . . . . . . . . . . . . . Unfertilized 
Arbacia. . . . . . . . . . . . . . . . .. Unfertilized 
Arbacia. ... . . Fertilized 
Cumingia . .. .... .. ... . . . Unfertilized 
ChaetopterU8 . . . . . . . . . . . .. Unfertilized 

Endosmosis 
Exosmosis 
Endosmosis 
Endosmosis 
Endosmosis 

KD Kk'X2 0 

* P = - = -- where X = 5 A. and Ii = 200 A. 
Ii Ii 

30.5 
39.5 
55.6 
92. 

103. 

keDI. keal. B.U. 

19.5 
14.5 
21.2 

10.1 31.6 
9.9 15.5 
9.7 38.8 
9.4 
9.3 

to hold true for the two pairs of substances, propylene glycol-glycerol and the 
methyl and ethyl ethers of glycerol. These calculated values are given in table 4. 
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TABLE 2 

Permeability of arbacia eggs (unfertilized) to aliphatic amides 

p em") x 10' 
K = [C . Oil] D(em.,) t 

SUBSTANCE sec. [C.H20] sec.- All' AF' AS' AF AF.· 
AT 22 ' C. X 10' X 10' 

---- ---- - -
kcal. kcal. E . U. kcal. 

Acetamide ....... . ...... 9.7 0 .83 2.3 12.1 7 .9 
Propionamide . ......... 23 .7 3.6 1.32 21.6 11.5 34. 8.2 
Butyramide .... . .. . ..... 60. 9.5 1.3 22 .8 11.0 40. 8.2 

* AF. = free energy of solubility. 

TABLE 3 

Permeability of animal and plant membranes to polyhydroxy alcohols 

A. Substance : ethylene glycol 

pe~") X 10' K ~ [C. Oilt l D (em" )t 
AF' SPECIMEN sec. [C. H20] sec. 

AT 22.5'C. X 10' I X 10' 
--

kcal . 

Arbacia (unfertilized) . . . . .. .. . . ... . . . 7.3 4.9 3 .0 12.2 
Arbacia eggs (fertilized) .... .. . .... . . 14. 4.9 5.7 11.8 
Chaetopterus (unfertilized) ........... 23 .8 4 .9 9 .7 11. 7 
Cumingia (unfertilized) .. .......... .. 26 .0 4.9 10.5 11 .5 
Chara ceratophylla . ... . . . ......... . .. 12 . 4.9 4 .9 11.9 

B. Substance: propylene glycol 

p( ~..: ) X 10' K = l~Oill~ D em.,) t 
SPECIMEN sec. [C.H,O] sec. AF' 

AT 22.5'C. X 10' X IO' 

kcal. 

Arbacia (unfertilized) . .. .... .. .... . . . 13. 5 .7 0.46 11.9 
Arbacia (fertilized) ..... . .......... . . 21.7 5.7 0.76 11.6 
Chara ceratophylla . ....... . . .... . .. .. 24. 5.7 0.84 11.5 

C. Substance: glycerol 

p (cm") X 10' K = [C.Oil]~ 
D em"r SPECIMEN sec. [C. H,O] sec. AF' 

AT 22.5'C. X 10' X 10' 
- -

kcal. 

Arbacia (unfertilized) . .. . ............ 0.05 7 .0 0.14 15. 
Chaetopterus (unfertilized) ... ...... . . 10.3 7 .0 29. 12.0 
Chara ceratophylla . .................. 0.21 7.0 0.60 14.3 

kcal. 

4.2 
3.3 
2.8 

AFt§ 

- -
kcal. 

7.7 
7.4 
7.2 
7.0 
7.4 

t 
AF§ 

--
kcal. 

8.8 
8.5 
8.4 

t 
AF§ 

--
kcal. 

9.5 
6.4 
8.7 

* The olive oil-water distribution coefficient assumed to represent the cell membrane-
water coefficients. 

t 0 = Assumed cell thickness of 200 A. 
§)"" / o = 1.25 X 10-9. 

In table 3 are summarized the values for the permeability constants of the 
polyhydroxy alcohols ethylene glycol, propylene glycol, and glycerol through 
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different marine invertebrates and the plant cell Chara. Thongh the permea­
bilities vary widely, it is seen that this is primarily due to their varied solubilities 
in the cell membrane. All of the heats, free energies, an~ entropies of activation 
are of approximately the same magnitude. In table 4 a comparison is made of 
the relative permeabilities of alcohols and ethers through the plant cell Chara. 
In contrast to the amides, here it is to be noticed that as we introduce more polar 
groups into the molecule, the free energies for permeability and diffusion both 

TABLE 4 

Cell permeability of the plant Chara ceratophylla to oxygen-containing aliphatic compounds 

p(~) X 10' K = [C. Oil] (emIr 
SUlISTANCE sec. [C.HsO] D sec: AF' 

AT 22·C. XI()8 XI()8 

Methanol. . . . . .... . . . . ........ . 280. 7.8 7 .20 10.1 
Ethylene glycol. .... . .. .. . .. . . . 12 . 0.49 4 .9 11.9 
Propylene glycol. . .... . . . . ..... 24. 5.7 0.84 11.5 
Glycerol. .... . . . . . . . . . . . . . . . 0.21 0.07 0.60 14.3 
Erythri tol. ... ... ............. 0.014 0.03 0.093 15.9 

Glycerol methyl ether .. .... .. . 12. 2 .6 0.92 11.9 
Glycerol ethyl ether .... ... .... 21. 7.4 0.57 11.6 

• Assumed values of cell thickness 200 A. and A as 5 A. 

TABLE 5 

Diffusion constants in water and plant cell membranes (Chara ceratophylla) 

SUBSTANCE 

Methanol. .. . .. . 
Ethanol. ...... ... ... . . . . .. .... . 
Acetamide .. .. .. . ....... . ... ... . 
Ethylene glycol ... . 
Propylene glycol . . . 
Glycerol. .. 
Erythritol. ... .... . ... . 

D (cm.s) X 10' 
sec, 

WATER (lS· C .) 

1.28 
1.00 
0 .96 
0 .93 
0 .83 
0.72 
0 .68 

D (cm.l ) X 10' 
sec. 
AT 22·C. 

72.0 
14.5 
36. 
49.0 
8.4 
6 .0 
0.93 

AFt 

- -
7.2 
7.4 
8.4 
8.7 
9.8 

8.4 
8.7 

increase. This indicates that as the substances become more soluble, it is easier 
for them to diffuse in the membrane. The values of the diffusion constants for 
non-electrolytes in membranes are of the order of 10,000 to 100,000 times smaller 
than their values for diffusion in aqueous solutions. This is primarily due to the 
higher energies of activation for diffusion in membranes. A few of the values for 
the diffusion constants are summarized in table 5. Their magnitudes occupy an 
in.termediate position in the spectrum of diffusion constants in solids and liquids 
which bespeak a semisolid structure for natural membranes. 
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SUMMARY 

A new theory has been developed for the diffusion and permeability of mem­
branes by considering molecular migration as a series of molecular jumps from 
one equilibrium position to another governed by a rate constant. 

A simple method has been developed for deriving Ficle's first and second laws 
by considering difference equations. 

The theory is applicable to the diffusion of electrolytes and non-electrolytes in 
homogeneous and heterogeneous . membranes, either in the presence or absence 
of external forces such as electrical fields, concentration gradients, or activity 
gradients. 

The theory has been applied to the permeability data of water, aliphatic alco­
hols, ethers, and amides through animal and plant cells. An analysis of the 
mechanism of the permeation process is made on the basis of distribution coeffi­
cients and temperature coefficients. By assuming diffusion in the bulk membrane 
as the slow step, free energies, heat energies, and entropies for permeation are 
calculated and discussed in terms of the natw-e of these membranes. The heats 
of activation were found to range from 14.5 to 23.6 kcal., with corresponding 
large values for the entropy changes from 15.5 to 38.8 E.U. Values for the diffu­
sion constants of the non-electrolytes in the bulle membrane are calculated. 

APPE!I.'DIX 

Conversion factors for the permeability constants 

(1) Permeability of water: The permeability constants for water as reported in 
the literature are calculated from the following equation expressing the swelling 
of an egg cell in hypertonic sea water. Osmotic pressure is assumed to be the sole 
driving force: 

(1) 

Here ~ is given in JL3j JL2-min.-atm., A is the area of the egg cell in square microns, 
and 'Ir and 'Ir. are the osmotic pressures of the internal and external solutions, 
respectively. In order to use the values of these constants it is necessary to con­
vert them to units of cm.-sec.-\ the conventional label for a permeability con­
stant. It is easily shown that the flux is 

Q = ~ dn = ~2 ('Ir _ 'Ir.) (2) 
A dt Vi 

where nl = number of moles of water penetrating, 
Vi = partial molar volume of water in cubic ..:entimeters per mole, and 
Q = moles of water per square centimeter per second. 

For dilute solutions, the osmotic pressure is given by 

p~ - Pi RT 
p~ Vi 

'cay : , IT 

(:--,) 
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where the mole fraction N2 of the solute is expressed in terms of the partial pres­
sures of the solution and solvent. If we substitute in equation 2, the following 
result expresses the transport of water into the egg cell: 

Q = k2 ~ T [(p~ ~ PI) ~ ] 
VI PI VI 

(4) 

where p~ and PI are the vapor pressures of water above the external solution (sea 
water) and the internal cell sap solution, respectively. The permeability constant 
is given by 

RT RT 
P = k2 VI "" k2 V m (5) 

where V Tn is the molal volume of water. Thus to convert the reported values of 
the permeability constant, k2, for water into units of cm.-sec.-\ we use the factor: 

P (
cm.) k RT 1 min. 10-4 / . 
- = 2 V- X 6-0 X cm. mICron 
sec. m sec. 

= k2 7.57 X 1O-6T(OK) 

(2) PeTmeability of non-electTolytes: The values for the permeability constants 
(kl ) for egg cells as reported by Jacobs, Danielli, and others are expressed in the 
units of moles of substance diffusing per unit cell area of 1 square micron per 
minute per a unit concentration gradient in moles per liter of solution. To con­
vert to our values of the permeability constants in units of centimeters per second, 
the following factor was used: 

P (cm.jsec.) = ki X 10-4 cm./ p. X 1/ 60 min./ sec. X lOI5p.3jliter 

which simplifies to 

P (cm./ sec.) = ki 1.67 X 109 
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